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In this work we present a method to solve the impulsive minimum fuel maneuver problem for a 
distributed set of spacecraft. We develop the method assuming a fully non-linear dynamics model and 
parameterize the problem to allow the method to be applicable to any flight regime. Furthermore, 
the approach is not limited by the inter-spacecraft separation distances and is applicable to both 
small formations as well as constellations. 

We assume that the desired relative motion is driven by mission requirements and has been 
determined a-priori. The goal of this work is to develop a technique to achieve the desired relative 
motion in a minimum fuel manner. We define the minimum fuel problem for a distributed set of m 
spacecraft, where the trajectory of the kth spacecraft has nk total maneuvers, as 

min( J )  (1) 

m where 

J = x A v k  (2) 
k = l  

and 
n k  

A h  = fa(Awjk)AvJk (3) 
j=1 

where AWjk is the j t h  maneuver performed by the kth spacecraft. The function fa(Aw,k) in Eq. ( 3 )  
is included to remove a singularity in the derivative of J for small Aw,k. This function will be 
discussed in detail in a later section. For now it suffices to say that fs(Awjk) = 1 for values of Av3k 
large enough to avoid numerical difficulties. To equalize the fuel expenditure among the spacecraft, 
we define a set of constraints as follows: 

where cln is a vector of tolerances. 

To permit applicability to multiple flight regimes, we have chosen to parameterize the cost 
function in terms of the maneuver times expressed in a useful time system and the maneuver locations 
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expressed in their Cartesian vector representations. We also include as an independent variable the 
initial reference orbit to solve for the optimal injection orbit to minimize and equalize the fuel 
expenditure of distributed sets of spacecraft with large interspacecraft separations. In this work we 
derive the derivatives of the cost and constraints with respect to all of the independent variables 
(Deriving the gradients i s  a non-trivial effort that  has already been completed. However, it is not 
included in the extended abstract due to  space l imitations).  We assume a dynamics model given by 
the second order differential equation 

i: = f (r ,  t )  (5) 

To demonstrate the method we have applied it to several test problems. The reference orbit for 
the test problem discussed here has a semimajor axis of 43000 km and an eccentricity of .83. The 
formation is composed of four spacecraft and is designed to form a regular tetrahedron with side 
lengths around 1000 km at apoapsis. Each spacecraft undergoes three maneuvers in the maneuver 
sequence. In the analysis shown below, we have included the gravitational affects of the Sun, Moon, 
Earth and 5 2 .  In the first case, we have not included the launch injection orbit as an independent 
variable or attempted to equalize the AV among the spacecraft. Results for test case one are shown 
in Table 1. In the second test case, we have included the initial reference orbit as an independent 
variable in order to find the optimal launch injection orbit. Results for test case two are shown 
in Table 2. As expected, by varying the initial injection orbit, the total fuel expenditure for the 
maneuver sequence is lower than that for case one. In the third test case, we have included the 
initial reference orbit as an independent variable and we have and enforced the constraints shown 
in Eq. (5) to equalize the fuel use among the spacecraft. The results for case three are found in 
Table 3. Here we see that the total A V  has increased. However, the spacecraft all expend the same 
amount of fuel. Note: T h e  f inal version of this paper will include a Libration Po in t  example not 

~~ 

included here. 
Table 1: Test Case One 

Property S I C  1 S I C 2  S I C 3  S I C 4  
- 1  

A v l  (m/s) 0.044 0.042 24.8 24.7 
Avz (m/s) 44.2 8.06 4.18 0.030 
Av, (mlsl 4.93 26.75 3.60 11.0 - .  , ,  

C A v j  (m/s) 49.2 34.849 32.6 35.7 
Total AV = 152.3 m/s 

Table 2: Test Case Two 
Property S/C 1 S/C 2 S/C 3 S/C 4 

A v l  (m/s) 16.2 16.1 9.21 ,049 
AVZ (m/s) 32.1 9.26 1.90 .032 
Avq fm/s) 11.5 14.3 8.54 5.04 

" \  I ,  

C A v j  (m/s) 59.9 39.7 19.7 5.1154 
Total AV = 124.4 m/s 

Table 3: Test Case Three 
Property S I C 1  SIC 2 S I C 3  S I C 4  

- 1  

Av, (m/s) 3.48 0.867 27.9 19.6 
AWS (m/s) 39.2 11.6 8.50 12.3 
Av3 (m/s) 0.20 31.0 6.75 11.0 

C A v j  (m/s) 42.87 43.5 43.2 42.8 
Total AV = 172.3 m/s 
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